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Abstract Nonpoint source (NPS) pollutants such as

phosphorus, nitrogen, sediment, and pesticides are the

foremost sources of water contamination in many of the

water bodies in the Midwestern agricultural watersheds.

This problem is expected to increase in the future with the

increasing demand to provide corn as grain or stover for

biofuel production. Best management practices (BMPs)

have been proven to effectively reduce the NPS pollutant

loads from agricultural areas. However, in a watershed

with multiple farms and multiple BMPs feasible for

implementation, it becomes a daunting task to choose a

right combination of BMPs that provide maximum pollu-

tion reduction for least implementation costs. Multi-

objective algorithms capable of searching from a large

number of solutions are required to meet the given water-

shed management objectives. Genetic algorithms have

been the most popular optimization algorithms for the

BMP selection and placement. However, previous BMP

optimization models did not study pesticide which is very

commonly used in corn areas. Also, with corn stover being

projected as a viable alternative for biofuel production

there might be unintended consequences of the reduced

residue in the corn fields on water quality. Therefore, there

is a need to study the impact of different levels of residue

management in combination with other BMPs at a water-

shed scale. In this research the following BMPs were

selected for placement in the watershed: (a) residue man-

agement, (b) filter strips, (c) parallel terraces, (d) contour

farming, and (e) tillage. We present a novel method of

combing different NPS pollutants into a single objective

function, which, along with the net costs, were used as the

two objective functions during optimization. In this study

we used BMP tool, a database that contains the pollution

reduction and cost information of different BMPs under

consideration which provides pollutant loads during opti-

mization. The BMP optimization was performed using a

NSGA-II based search method. The model was tested for

the selection and placement of BMPs in Wildcat Creek

Watershed, a corn dominated watershed located in north-

central Indiana, to reduce nitrogen, phosphorus, sediment,

and pesticide losses from the watershed. The Pareto opti-

mal fronts (plotted as spider plots) generated between the

optimized objective functions can be used to make man-

agement decisions to achieve desired water quality goals

with minimum BMP implementation and maintenance cost

for the watershed. Also these solutions were geographically

mapped to show the locations where various BMPs should

be implemented. The solutions with larger pollution

reduction consisted of buffer filter strips that lead to larger

pollution reduction with greater costs compared to other

alternatives.
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Introduction

Nonpoint Source (NPS) pollutants such as phosphorus (P),

nitrogen (N), sediment, and pesticides are major causes of

water impairment in many water bodies globally (Car-

penter and others 1998; Dowd and others 2008). Runoff

and leaching losses of fertilizers and pesticides from agri-

cultural lands are a major source of NPS pollution. P and N

are the leading sources of eutrophication in the US

(Alexander and others 2008). Similarly, excess sediment

loading in the water bodies from upland agricultural areas

due to soil erosion affects nearly 99% of the water bodies

in the US (Ritter and Shirmohammadi 2001). The presence

of excess sediments causes silting of stream beds which in

turn reduces the carrying capacity of the water leading to

increased flooding. Also, soil erosion is a major source for

transportation of phosphorus, as phosphorus is attached to

sediment (Carpenter and others 1998). Atrazine (6-chloro-

N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) is one

of the most extensively used pesticide in corn areas in the

US. The pollution of surface and ground water bodies

exposes humans to atrazine via drinking water. Research

shows that atrazine in drinking water could possibly be a

cause for small-for-gestational-age (SGA), defined as birth

weight below the 10th percentile for a given sex and ges-

tational week (Ochoa-Acuna and others 2009). In 2007,

corn areas in the US received 6 million tons of N, 2 million

tons of P, and 25,000 tons of atrazine (USDA 2007).

The problem of NPS pollutants can be expected to

increase in the future with emphasis on increased corn

production to meet bio-fuel (ethanol) demands. The

United States Department of Agriculture (USDA) projects

to produce 36 billion gallons of ethanol by 2022 with 20

billion gallons from corn based ethanol and 16 billion

gallons from advanced biofuel crops such as swithgrass,

woody biomass, and vegetable oils. An increase in corn

acreage is expected to increment the NPS pollutant

loadings to the Gulf of Mexico and the Atlantic coastal

waters (Simpson and others 2008; Thomas and others

2009). Additionally an increase in the residue removal, to

meet the cellulose based ethanol, can have an adverse

impact by increasing the transport of NPS pollutants

through accelerated surface runoff and erosion (Ullrich

and Volk 2009).

Movement of NPS pollutants into receiving water bod-

ies can be reduced significantly by properly implementing

best management practices (BMPs) at the farm level

(Fulton and others 1999; Ritter and Shirmohammadi 2001).

Approximately $7.8 billion have been provided by the US

Farm Bill in 2007 for conservation programs to reduce

NPS pollution and improve water quality. For example, the

National Resources Conservation Service (NRCS) in

Indiana provides millions of dollars to farmers by

providing annual rental payment and cost share for the

establishment of BMPs on eligible acreages through the

Continuous Conservation Reserve Program (CCRP), and

Environmental Quality Incentive Program (EQIP). Effec-

tiveness of such programs in reducing NPS pollution can

be enhanced through development of watershed manage-

ment tools that select farms for the placement of BMPs in a

cost effective manner.

Selection and placement of BMPs are constrained by

ecological, economical and crop management factors.

Although BMPs are installed at the farm level, water

quality standards are expected to be met at the watershed

scale. Often monitoring resources available for BMP

implementation and maintenance are limited and infor-

mation about location of the most effective BMPs is

lacking, resulting in non-attainment of water quality goals.

Therefore, it is desirable to select a set of BMPs that would

give the most reduction in pollutant loads for minimal

implementation and maintenance costs in the watershed.

For a given watershed with many farms and multiple BMP

options in each farm, evaluating all possibilities becomes

highly complex. For example, a small watershed consisting

of 100 farms with four possible BMPs for every farm

would require 4100 evaluations and simulating this using a

watershed model is practically unfeasible. Obtaining

solutions to this problem requires some kind of optimiza-

tion technique that searches for the best solution among

various different possibilities to achieve the multiple

objectives of (a) maximum pollutant reduction and

(b) minimum associated net cost.

Genetic Algorithms (GAs) have been previously applied

to optimize BMP selection and placement in a watershed

with an aim to optimize the two objective functions (Arabi

and others 2006; Bekele and Nicklow 2005; Gitau and

others 2004; Maringanti and others 2009; Srivastava and

others 2002; Veith and others 2003a). Some of these opti-

mization methods used a single objective function that

combines the two objectives during optimization (Arabi and

others 2006; Srivastava and others 2002) or sequential

optimization of the two objective functions one after the

other (Gitau and others 2004; Veith and others 2004).

Recent advancements use multi-objective optimization

algorithms that simultaneously optimize the two objective

functions (Bekele and Nicklow 2005; Maringanti and others

2009; Rabotyagov and others 2010). One advantage with

the multi-optimization techniques is that they aid in visu-

alizing the tradeoff between the two objective functions

during optimization. A large computation time needed for

optimization was one of the main limitations of previous

approaches because the watershed model was dynamically

linked with the optimization model to estimate pollutant

loads (Arabi and others 2006; Bekele and Nicklow 2005;

Srivastava and others 2002). The large computation time is
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also directly linked to the watershed discretization (HRUs

in the SWAT model) as large watersheds ([1000 km2)

usually lead to larger number of HRUs than a smaller

watershed with the same land use/soil threshold used.

Replacing the watershed model by a BMP tool has con-

siderably reduced the time needed for BMP optimization

(Gitau and others 2004; Maringanti and others 2009; Veith

and others 2003b). Recent developments in BMP optimi-

zation strategies and management of large computational

data have further improved the feasibility of implementing

BMP optimization on large watersheds (Maringanti and

others 2009; Rabotyagov and others 2010).

Research to date indicates that GAs have been effective

to search a global search space to obtain optimization

solutions for selection and placement of BMPs for NPS

pollution reduction. However, there are several questions

that have not been addressed in previous research. For

example, multi-objective optimization methods were used

for P and nitrate-N reduction by Rabotyagov and others

(2010), and sediment reduction by Bekele and Nicklow

(2005). However, application of the multi-objective BMP

optimization on multiple concurrent NPS pollutants of

concern in corn areas such as P, N, sediment and pesticide

has not been studied before. Atrazine, a very commonly

used pesticide, has not been studied before during BMP

optimization. Also, there are many combinations of BMPs

that can be implemented at a farm level that produce dif-

ferent pollutant reductions for different costs of imple-

mentation. With recent advancement of obtaining cellulose

based ethanol from corn stover, there is a need to examine

how different levels of residue management impact the

water quality and therefore the BMP optimization. There is

a need to implement exhaustive BMP combination sets that

have not been applied before in a single study, for NPS

pollution control during BMP optimization.

The overall goal of this paper was to apply a GA based

multi-objective optimization tool, utilizing the BMP tool,

presented in Maringanti and others (2009) to efficiently

optimize the selection and placement of BMPs in a pre-

dominantly agricultural watershed. The overall goal was

achieved by the following tasks: (1) calibrate a watershed

model (Soil and Water Assessment Tool or SWAT) to

simulate streamflow, P, N, sediment, and atrazine; (2)

develop pollutant reduction indices and their corresponding

costs for different combination of BMPs planned for

implementation; and (3) apply a multi-objective BMP

optimization technique that optimally selects BMP combi-

nation sets to be placed at a field level in the watershed. The

multi-objectives consisted of (a) minimization of net NPS

pollutant loads combined into a single objective function

and (b) minimization of net cost increase because of the

placement of BMPs in the watershed. The multi-objective

optimization tool provided a trade off (Pareto-optimal

front), for the near optimal solution, between the two con-

flicting objective functions which aids decision makers to

choose from a range of solutions. Also, a representation of

all objective functions of optimization, using a spider plot,

aids in visualizing a five-dimensional space.

Theoretical Background

Genetic Algorithms (GA)

Genetic algorithm (GA) optimization procedures belong to

the family of heuristic evolutionary algorithms that mimic

the natural evolutionary processes to search optimal solu-

tions for diverse, complex, and globally distributed prob-

lems. Heuristic optimization methods provide near optimal

solutions by searching a global variable space; however,

they do not ensure global optimal solution. Nevertheless,

the advantage of using heuristic algorithms is to search a

discrete solution space globally which is not possible by

gradient based search methods that require continuous

solution space and have a possibility to get stuck in a local

optimal solution. In brief, a GA consists of a population

(represented as chromosome with genes as variables) of

solutions that are initialized randomly and their fitness is

estimated by evaluating the objective functions. In the

selection process, the fittest individuals are duplicated and

the weak ones are discarded. This process is repated to

increase the fitness of the population (Fig. 1). Mutation and

crossover are used to obtain a new set of individuals that

are stronger than the parents. This process is continued for

a given number of iterations known as generations. Usually

an increase in population size and number of generations is

used to enhance GA performance at the expense of com-

putation time needed to reach an optimal solution.

In multi-objective problems, which can be solved by

multi-objective genetic algorithms, the goal is to obtain

S
TO
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NO

Initialize population

YES

SWAT Land use

Evaluate fitness

NSGA - II

Is gen=max_gen?

BMP tool

Elite Set

CrossoverMutation

Gen=gen+1

Nondominant
Sorting

Selection

START

Fig. 1 Components and processes during the multi-objective opti-

mization process for BMP selection and placement (adapted from

Maringanti and others 2009)
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interactions of conflicting objective functions to yield a

range of non-dominated solutions known as Pareto-optimal

solutions (Deb and others 2001). The non-dominated

solutions can be plotted in a two or three dimensional plot

to visualize the tradeoff between the different objective

functions. Non-dominated Sorted Genetic Algorithm

(NSGA-II) (Deb 1999; Deb and others 2002) is one of the

widely used multi-objective genetic algorithm techniques

for the selection and placement of BMPs. Non-dominated

sorting and elitism are two important properties used by

NSGA-II to ensure that the optimization solutions are

diverse and have a good spread in all the objective func-

tions (Zitzler and Thiele 1999). More details about NSGA-

II can be obtained from Deb and others (2002). The NSGA-

II algorithm was selected to perform multi-objective opti-

mization in this study.

Description of the Watershed Model

Soil and Water Assessment Tool (SWAT) was used to

simulate watershed response in this study. The model is

developed to simulate long term effects of various water-

shed management decisions on hydrology and water

quality response (Arnold and others 1998). It performs well

for long-term continuous simulations at daily, monthly, and

annual time scales (Borah and Bera 2004; Gassman and

others 2007). Stream network and user defined outlets are

used to divide the watershed into subwatersheds. Land use,

soil, and slope properties are used by the model to further

divide a subwatershed into hydrologic response units

(HRUs); the smallest geographic area for which flow and

transport of nutrients, sediment, and chemicals are per-

formed by the model. The climatic input data required are

precipitation, temperature, solar radiation, relative humid-

ity, and wind speed on a daily or subdaily basis.

Surface runoff is computed using a modification of the

SCS curve number technique or Green and Ampt infiltra-

tion method. Soil erosion is modeled at a field scale using

the modified universal soil loss equation (MUSLE) (Wil-

liams 1975). Soil particle detachment, transport, and

deposition by erosive forces such as surface flow of water

are modeled. Surface cover, soil erodibility factor, man-

agement practice, topography, and the size of a soil particle

are important in obtaining quantitative estimation of the

amount of soil eroded from a particular field (Neitsch and

others 2005).

Various components of the P and N cycles are repre-

sented in the SWAT model. SWAT distributes phosphorus

into six different pools in the soil column (Neitsch and

others 2005) with an equal number of inorganic and

organic pools. Decomposition of P involves breakdown of

fresh organic residue into simpler organic components.

Mineralization is the conversion of organic P into plant

available inorganic P. Surface runoff and soil erosion are

major sources of P removal from a field. Also, P is allowed

only to leach from the top 10 mm of soil into the first soil

layer only due to its low mobility. Similarly, SWAT dis-

tributes N into five different pools in the soil column (two

inorganic and three organic pools). Unlike P, N is highly

mobile and is transported from a field mainly through

denitrification, volatilization, and leaching (Neitsch and

others 2005).

SWAT algorithms for the processes that govern the fate

and transport of pesticides such as wash-off, degradation,

and leaching were adapted from GLEAMS (Leonard and

others 1995). Most of the pesticides, including atrazine, are

organic carbon containing compounds which are degraded

by microorganisms. The degradation typically follows first

order kinetics for pesticide present in both soil and plant

foliages. Pesticide transport through surface runoff occurs

in solution or adsorbed forms. The SWAT model considers

one pesticide at a time to incorporate routing and in-stream

pesticide transformations (Neitsch and others 2005) based

on the equations proposed by Chapra (1997).

The SWAT model interface enables representation of

various BMPs by changing appropriate parameter values in

the model input files. In this study we have used the BMP

tool developed by Maringanti and others (2009) to estimate

the effectiveness of BMPs for a particular pollutant

reduction.

Methodology

A flow chart for the processes that follow during the multi-

objective optimization are shown in Fig. 1. Each variable

that was optimized constitutes a BMP or a set of BMPs that

needs to be placed in an HRU in the watershed. Therefore,

the total number of variables equal the total number of

HRUs in the watershed that need to be optimally placed

with BMPs for the reduction of various NPS pollutants.

The chromosome string for each population consists of

variables and each variable used binary coding of the

genes. The variables were initiated randomly for a given

population size. The HRU level pollutant loading simulated

by the SWAT model under baseline conditions (assuming

no BMPs placed in the watershed), an allele set repre-

senting land use constraints for BMP placement, and a

BMP tool representing pollution reduction efficiency and

corresponding BMP costs were required by the optimiza-

tion algorithm to evaluate the objective functions (one for

the pollutant load, and a second for the cost) for the ini-

tialized population and each subsequent generation.

Mutation and crossover were used to create a new popu-

lation for the next generation. The model terminated when

the maximum generation was reached, which was the

Environmental Management (2011) 48:448–461 451

123



www.manaraa.com

stopping condition to provide a range of optimized solu-

tions for the two objective functions.

Study Watershed

Wildcat Creek (WCC) Watershed (Fig. 2) (8 digit USGS

HUC 05120107) located in northcentral Indiana, with a

drainage area of 1,956 km2, was used for testing the opti-

mal BMP selection and placement. The watershed is pre-

dominately agricultural with 74% row crops (36% soybean,

38% corn), 21% pasture, and 3% urban area, and has a

mean annual precipitation of 1,054 mm. The watershed has

a flat terrain with an average slope of 1.5%. The high

pesticide (atrazine) loading from the agricultural areas has

degraded the water quality in most of the watersheds in

Indiana (Homes and others 2001). Phosphorus concentra-

tions in the watershed streams are considered to be ele-

vated. Similarly, many of the streams in the watershed

violate ammonia standards (Tetra Tech 2008). A total of

117 water bodies in the watershed are listed in the

303(d) list of impaired water bodies. Various NPS pollu-

tion reduction projects are being undertaken in the water-

shed. However, success for these projects can be increased

by evaluating the efficiency of various BMP selection

decisions and implementing those with the greatest eco-

nomical and ecological benefits.

Calibration of the SWAT Model to Simulate Flow

and Water Quality

The SWAT model was calibrated for daily streamflow at

the USGS gauging station (03333700) located near

Kokomo (Fig. 2) using the coefficient of determination

(R2) (Eq. 1) and the Nash-Sutcliffe efficiency coefficient

(RNS
2 ) (Eq. 2) where O and P stand for observed and pre-

dicted outputs respectively.

R2 ¼
Pn

i¼1 Oi � O
� �

Pi � P
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 Oi � O
� �2Pn

i¼1 Pi � P
� �2

q

2

6
4

3

7
5

2

ð1Þ

R2
NS ¼ 1�

Pn
i¼1 Oi � Pið Þ2

Pn
i¼1 Oi � O
� �2

ð2Þ

Calibration for the water quality was performed for a

Indiana Department of Environmental Management (IDEM)

water quality fixed station that coincided with the USGS

gauge location. Measured water quality data included total

phosphorus (P) in kg, total nitrogen (N) in kg, sediment load

(SLD) in tons as well as atrazine in part per billion (ppb)

which were available for only a few days during each year.

Therefore, a LOADEST model (Runkel and others 2004)

was used to estimate the daily loads for P, N, and sediment

based on the measured pollutant concentrations and daily

streamflow. LOADEST model has been used previously as a

regression tool to develop rating curves that are used to

estimate water quality loads from sparsely available grab

sample data to calibrate the SWAT model (Jha and others

2007, 2010; Mukundan and others 2010). The SWAT model

was calibrated for water quality on a monthly scale using the

LOADEST estimated loads as the observed values.

However, we did not use the LOADEST model to estimate

pesticide concentrations and instead minimized the absolute

difference between the measured and simulated total annual

average pesticide loads. This method was used as most of the

pesticide output was observed for only a few months each

year following the application and the exact application

timing of pesticide in different fields in the study watershed

was not available. As we could not match up the exact daily

Corn Soybeans Other

0 10 205
Kilometers

USGS Station ID 03333700

IDEM Station ID 03911

N

##

#

^

$
$

Fig. 2 Location of Wildcat

Creek Watershed in Indiana and

the observed gauge locations
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streamflow time period contributing the observed pesticide

loads in the watershed we chose to estimate the total

simulated loads at an annual scale which were then compared

against the observed annual loads.

Allele Set Preparation

The BMPs selection depends on land use/cover, i.e. every

land use has specific BMPs, represented as an allele set,

that are feasible to be implemented in the particular region.

Furthermore a BMP set that consists of a combination of

BMPs (based on the allele set) was created. The allele set

was input to the optimization model and narrowed the

search space for a given land use to a definite combination

of BMPs that could be selected. Table 1 shows the allele

set of BMPs in the Wildcat Creek Watershed. Since corn

and soybean are the dominant agricultural areas in the

watershed, BMPs were considered for selection in these

areas only. All other farms were given a value of ‘Null’,

indicating that the search process did not change the

management in these farms from the baseline scenario, thus

narrowing the search for finding the optimal solution only

to the fields where BMPs could be applied.

BMP Tool

The BMP tool consisted of pollution reduction effective-

ness values, determined from the SWAT model, and the

cost for each candidate BMP. To develop the BMP tool, all

the HRUs in the watershed that had a common land use

were selected. A BMP scenario consisted of implementing

one BMP set, corresponding to the chosen land use, using

SWAT model in the entire watershed. Outputs from a

particular BMP scenario were average annual watershed

loads of total phosphorus (TP), total nitrogen (TN), sedi-

ment, and atrazine. The cost information estimated the total

costs for the placement of the BMP sets considering both

implementation and maintenance (Table 2). The BMP

pollution reduction along with the corresponding cost of

each BMP set was stored in a database. Use of the BMP

tool eliminated the need for dynamically linking the SWAT

model with the optimization model. More details about the

BMP tool and its applicability can be obtained from

Maringanti and others (2009). One limitation with the BMP

tool method of estimating pollutant loads in the watershed

is that the loads approximated might be different from the

loads estimated using a watershed model for each BMP

implementation scenario during optimization. However, it

was observed by Maringanti and others (2009) that the

solutions obtained during the optimization and simulated

using the SWAT model lead to similar responses (but of

different magnitudes) as the ones obtained by the BMP tool

(Fig. 3).

The BMP costs consisted of annual net costs per unit

area ($/ha) and included both implementation and main-

tenance costs. The costs for the tillage management prac-

tice in corn were obtained from the University of Illinois

Extension Service publication (FEFO 2006). The other cost

information for the various BMPs for year 2007, as shown

in Table 2, were obtained from Indiana Environmental

Quality Incentives Program (EQIP). For each of the BMPs,

the total cost (ctd) for the design life was estimated by

incorporating maintenance, interest rate, and design life

(td) information evaluated by the following equation

(Arabi and others 2006):

ctd $=ha=yrð Þ ¼ c0 1þ sð Þtdþrm
Xtd

s¼1

1þ sð Þs�1

" # !

=td

) ctd $=ha=yrð Þ ¼ c0 1þ sð Þtdþrm
1þ sð Þtd�1

s

 ! !

=td

ð3Þ

where c0 represents the current BMP implementation costs

($/ha), rm is the ratio of maintenance to implementation

cost (1% for filter strips), and s is the fixed interest rate

(6%). A design life (td) of 10 years was considered for

filter strips, and parallel terrace; a td of 1 year was con-

sidered for residue management, contour farming, and

tillage BMPs. These numbers for rm, s and td were used

from Arabi and others (2006). The change in yields

Table 1 Allele set of BMPs in Wildcat Creek Watershed

BMP Allele set

Filter strips 0, 5, 10, 20, and 30 m

Contour farming ‘Not Present’ and ‘Present’

Residue management 1000, 3000, 5000, and 7000 kg/ha

Parallel terrace ‘Not Present’ and ‘Present’

Tillage Conservational and No-till

Table 2 Cost information and type of best management practices

used in the BMP tool

BMP BMP Type (#)a Cost Unit

Filter strips 0, 5, 10, 20, 30 m (0–4) 12.2 $/ha/mb

Contour farming NP, Pc (0–1) 16.8 $/ha

Residue

management

1000, 3000, 5000, 7000 kg/ha

(1–4)

0 $/ha

Parallel terrace NP, Pc (0–1) 74.9 $/ha

Tillage Conservational, No-till (1–2) 53.1 $/ha

a BMP Type corresponds to the number used to plot Fig. 3
b Cost of filter strips per unit width
c NP and P stand for Not Present and Present for the respective BMP

Environmental Management (2011) 48:448–461 453
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possible due to the implementation of BMPs was not

considered while estimating the costs.

Multi-Objective Genetic Algorithm Model

Development

The HRUs, delineated by SWAT, also correspond to the

variables for which the BMPs were searched to meet the

two objective functions of (a) minimization of NPS pol-

lutant loads and (b) minimization of the net cost increase at

the watershed due to BMP placement. The chromosome

string corresponding to the optimization problem consists

of genes equal to the number of HRUs in the watershed

(Fig. 4). The two objective functions are mathematically

expressed as:

min f1�4 Xð Þð Þ ^ g Xð Þð Þ½ � ð4Þ

where f1-4(X) is the Normalized Aggregate Pollutant

Value (NAPV) calculated as the product of reduction in

the nitrogen, phosphorus, sediment, and pesticide loads.

This is expressed as a single objective that designates

total pollutant loss reduction for various HRUs in the

watershed (Eq. 5). g(X) represents the net cost incurred

due to the placement of the BMPs in the watershed

(Eq. 6).

f1�4 Xð Þ ¼
Y4

i¼1

P
x2X Pi xð Þ � A xð Þð Þ 1� Ri xð Þð Þ

Pi �
P

x2X A xð Þ

 !

ð5Þ

g Xð Þ ¼
P

x2X Ci xð ÞA xð Þ
P

x2X A xð Þ ð6Þ

where X represents the HRUs in the watershed, Pi is the

baseline pollutant load i from a HRU, Ri is the pollutant

reduction efficiency of BMP, A is the Area of HRU, and Ci

is the unit cost of the BMP.

The SWAT model simulated HRU level NPS pollution

loads along with an allele set and the BMP tool are used to

estimate the two objective functions during optimization.

During the optimization process, the algorithm searches

first for the BMP set to be implemented in each HRU. The

BMP tool provided pollution loading and associated BMP

cost. For example, an HRU #122 which has corn as the

land use (allele value = 1) and is to receive a BMP set

consisting of conservation tillage, 10 m buffer, contour

farming; the corresponding values for pollutant reduction

and net costs for implementation are obtained from the

BMP tool. HRU weighted averages of NAPV and net costs,

the two objective functions that were minimized during the

optimization (Eq. 4), were calculated using Eqs. 5 and 6.

Fig. 3 Pollution reduction

efficiency for the various

combinations of BMPs that can

be implemented in the

watershed (BMP Type

information provided in

Table 2)

1 5 2 3 4 6 403 7 8 9 

BMP :: f(HRU,LUSE) 

Chromosome 
(Size: No. of HRUs)

Fig. 4 Gene string for BMP representation in a watershed (adopted

from Maringanti and others 2009)
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Sensitivity Analysis and Estimation of GA Parameters

Influence of GA parameters on the Pareto-optimal fronts

was quantified using a sensitivity analysis. The Pareto front

presents the tradeoff between the two objective functions

with the x-axis representing the pollutant load and y-axis

representing the net costs. Each solution on this tradeoff

curve represents a set of BMPs that need to be imple-

mented in each HRU in the watershed. Each GA parameter,

i.e., population size, number of generations, mutation, and

crossover probability, was changed, one at a time, in the

sensitivity analysis. Crossover and mutation probability

range from 0 to 1 and were varied to cover the entire range

of parameter values. Results were plotted to quantify

improvement or degradation in the Pareto-optimal fronts.

The sensitivity analysis was performed for pesticide and

similar behavior in the GA operational parameters was

assumed for other NPS pollutants.

Estimating the goodness of the solutions in the Pareto-

optimal front is subjective. As the front moves towards

the origin, it is ensured that the magnitude of the objec-

tive functions for the solutions get reduced in both the

directions. Therefore, the Pareto-optimal front as close to

the origin as possible is desired. The parameter value

resulting in the least sum of distances to each solution on

the Pareto-front from the origin in sensitivity analysis was

selected as the final parameter values for the optimization

process.

Results and Discussion

SWAT Model Calibration

The watershed consisted of 52 subbasins and 403 hydro-

logical response units (HRUs). For the analysis each HRU

was approximated to be a farm, and the BMPs were

selected for placement at each of the HRUs. The SWAT

model was calibrated for stream flow (USGS # 03333700)

for 3 years (2001–2003) and the daily calibration statistics

had an R2 and RNS
2 equal to 0.68 and 0.60 respectively

(Fig. 5). The model validation was performed for the years

2004–2005 and the corresponding R2 and RNS
2 was 0.56 and

0.51 respectively. Monthly phosphorus loads estimated by

the LOADEST model were used to calibrate the monthly

loads simulated by the SWAT model with model perfor-

mance measures for R2 and RNS
2 equal to 0.84 and 0.54

respectively (Fig. 6a). Similarly nitrogen and sediment

loads simulated by the SWAT model were calibrated

against the LOADEST estimated loads with R2 equal to

0.84 and 0.88, and RNS
2 equal to 0.64 and 0.62 respectively

(Fig. 6b, c). Overall, it was observed that the performance

measures for the streamflow, P, N, and sediment at their

respective time scales were in the good-very good range

published in literature (Moriasi and others 2007; Santhi and

others 2001). Figure 7 presents the observed versus the

simulated pesticide concentrations during the calibration

period. Due to the small quantity of available data, R2 and

RNS
2 could not be calculated. The parameters that were

modified during the calibration process are provided in

Table 3.

BMP Tool

For each HRU with corn and soybean as land use, 160

different BMP sets (5 filter strips 9 2 contour farming 9 4

residue management 9 2 parallel terrace 9 2 tillage) were

possible for placement, including the possibility of multiple

BMP sets in a single HRU. The different BMPs considered

for placement are described in Table 2. For example, the

BMP scenario number 1 consisted of a residue manage-

ment of 1000 kg/ha (Type #1 for residue management) and

conservation till (Type #1 for tillage) and scenario number

33 consisted of a 10 m filter strip (Type #2 for filter strips)

in addition. Based on the type of BMP set being imple-

mented, the corresponding input files in the SWAT model

were modified to incorporate all management practices

present in the BMP set according to the method suggested

by Arabi and others (2008). The baseline model was con-

sidered to have no best management practice placed in the

watershed. The percentage reduction from the baseline due

to BMP placement represented the BMP effectiveness for

all the NPS pollutant loads. Figure 3 presents the pollution

reduction efficiencies of various combinations of BMPs

when implemented in the watershed for NPS pollution

control. Contour farming had negative impact on the total

nitrogen and total phosphorus by increasing the pollutant

load in the watershed when no filter strip was present. Filter
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strips as well as presence of parallel terrace were observed

to produce higher percentage of pollution reduction, while

residue management did not impact the pollutant reduction

considerably. Contour farming only improved the per-

centage reduction of pesticide. No-till had a positive

impact on the percentage reduction of pesticide load, and

a slight negative impact on total phosphorus reduction.

Tillage practices had no effect on percentage reduction in

sediment and total nitrogen load. It was also observed that

the SWAT model algorithms overestimated the sediment

and pesticide load reductions as compared to LOADEST

when the filter strip width reached 30 m.

Sensitivity and Estimation of GA Operational

Parameters

The results obtained from the optimization indicate that

increasing the population size from 10 to 100 considerably

improved the performance of the model (Pareto-optimal

front). A further increase in population size resulted in no

appreciable improvement in the Pareto-optimal front. A

population size of 800 gave a better spread when compared

to the other population sizes considered (Fig. 8a).

The Pareto-optimal front improved as the number of

generations was increased from 100 to 5,000 (starting with

100, 1000 and then incrementing by 1000 generations

during each successive simulation). Further increase in the

number of generations to 10,000 did not display any

improvement in the results compared to the results

obtained at 5,000 generations (Fig. 8b).

The uniform crossover operation was not as sensitive in

perturbing the objective space when compared to other GA

parameters. As the crossover increased from 0.1 to 0.5, the
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Pareto-front approached the origin. However, when the

crossover rate was further increased to 0.9, the Pareto-front

moved away from the origin. Overall the change in the

Pareto-optimal front was very small for different crossover

fractions (Fig. 8c). Therefore, the closest front, corre-

sponding to a crossover value of 0.5, was chosen for the

optimization process.

Mutation probability operator was observed to be a

moderately sensitive parameter (Fig. 8d). There was no

particular pattern observed when the mutation operator was

increased from 0.001 to 0.05. However, a value of 0.005

provided the best solution (with Pareto front closest to the

origin) as compared to the others.

Multi-Objective Optimization Model

Table 4 summarizes the default and optimal values for the

GA parameters that were used for optimization. The opti-

mization model run with a population of 800 and 5,000

generations took 2 h to complete on a Centrino-

Duo@2.16 GHz computer. During the first generation of

the GA, the variables of the population were initiated

randomly. However, for the further generations the vari-

ables were modified using the genetic operators of cross-

over and mutation. Figure 9 shows the progress of the

Pareto-optimal front during the optimization of the two

objective functions, NAPV and net cost. Solutions during

Table 3 Parameters modified during the calibration process

Parameter Description Component Calibrated value

SURLAG Surface runoff lag coefficient Flow 0.50

ALPHA_BF Base flow recession parameter Flow 0.30

GWQWMN Threshold depth of water in the shallow aquifer for return flow to occur Flow 200

ESCO Soil evaporation compensation factor Flow 0.55

OV_N Manning’s ‘‘n’’ for overland flow Flow 0.20

CN_F Curve number Flow ?0.13%

PERCOP Pesticide percolation coefficient Pesticide 0.20

NPERCO Nitrogen percolation coefficient Nitrogen 0.20

USLE_P USLE practice factor Phosphorus 0.70

Curve number is changed as a percentage from the original value

Fig. 8 Pareto-optimal front for

the sensitivity analysis of GA

parameters (in order to visualize

better, solutions at an interval of

ten populations are shown in the

figure)
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the first few generations are highly scattered and non-

dominance is not exhibited by the solutions. However, as

the optimization progresses the scattering of solutions is

minimized, i.e., solutions are non-dominated and the

Pareto-front moves towards the origin; the spread of the

solution is improved, thus providing a wider choice for

the selection of optimized set of BMPs to be placed in the

watershed.

Figure 10 shows the various pollutant loads obtained by

implementing solutions from the final generation of opti-

mization. A range of solutions that cost $25–$275/ha pro-

vide a reduction of 37–76, 23–49, 45–83, and 53–93%

respectively for P, N, sediment loads and atrazine concen-

tration. Figure 11 represents the pollutant loads along with

the costs for implementation of BMPs for each output of

interest as a spider plot. This plot can be used to estimate the

different variables corresponding to a particular variable of

concern (a pollutant or cost). The solutions from the multi-

objective optimization model, unlike the single solution

obtained from single objective optimization models, pro-

vide the decision maker choices to optimize the funds

available. In other cases where the goal is to obtain a

solution to meet the specified water quality improvement

goals in a watershed, the solutions should at least produce

the specified reduction; therefore the optimized solution

that costs the least for achieving the particular water quality

goals is selected. However, if equal weight is to be given to

the two objectives of pollution reduction and net cost

Table 4 Default and optimal parameters chosen for GA from sen-

sitivity analysis

Parameter Default Optimal

Population 400 800

No. of generations 500 5000

Crossover probability 0.7 0.5

Mutation probability 0.001 0.005
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Fig. 9 Progress of the Pareto-optimal front during optimization of

the model (in order to visualize better, solutions at an interval of 20

populations are shown in the figure)

Fig. 10 Pareto-optimal front

after the final generation (5000)

of the multi-objective

optimization
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increase, the solution that is closest to the origin is selected,

i.e. a solution for which Eq. 7 is the least.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f Xð Þð Þ2þ g Xð Þð Þ2
q

ð7Þ

Figure 12 demonstrates the spatial placement of BMPs

in the watershed, at the HRU level. Four different scenarios

indicated in Fig. 11 were represented spatially for different

costs for placement of BMPs in the watershed. It can be

noticed that the solutions that cost the most contain the

BMP combinations with filter strips of 30 m (the red color

emphasis that BMP 128 to 160 are preferred). On the other

had low cost solutions did not include filter strips as one of

the BMP options.

Summary and Conclusions

Watershed management to minimize pollutant loads and

associated BMP costs requires finding an optimal solution

from a very large number of feasible alternatives. In this

research we have applied an optimization methodology that

uses a BMP tool embedded in genetic algorithms (GAs)

developed in our previous research (Maringanti and others

2009) in a watershed that has corn as the dominant land use

and is susceptible to unintended consequences due to the

increase in biofuel demand (Melillo and others 2009). It

was observed that the BMP tool based optimization takes

less computation time when compared to the time taken by

models that use dynamic linkage to estimate the pollutant

loads. The BMP tool required running the SWAT model

for all 160 combinations of feasible BMPs that were spe-

cific to the study watershed. BMP pollution efficiency was

computed for each combination of BMPs by comparing the
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pollutant load with the baseline, where no BMPs were

implemented. A novel contribution of this research was the

combination of structural and non-structural BMPs opti-

mized to reduce four different NPS pollutants in a water-

shed. In this study we developed optimal solutions that

would reduce all the pollutant loads in the watershed

simultaneously using a novel concept of normalized

aggregate pollutant value (NAPV) that combines all the

NPS pollutant loads into a single value. The multi-

objective optimization of the two objective functions (NPS

reduction and cost) was performed using the genetic

algorithm NSGA-II. Inputs for the optimization model

included the SWAT output (baseline scenario) for the

pollutant loading at the HRU level, a BMP tool providing

the BMP effectiveness estimated from SWAT runs and the

corresponding cost, and allele sets for each different land

use. NSGA-II parameters were estimated using a sensitiv-

ity analysis for pesticide (atrazine). The final optimized

result gave a trade-off between the two objective functions

of NAPV and net cost. Overall, the optimization model

performed well in reducing the pollutant load from the

watershed.

The optimization model developed in this study can be

easily extended to any other watershed model to develop

the Pareto-optimal fronts, provided the watershed model is

calibrated (if required) and a suitable set of BMPs needed

for pollutant reduction is available. The optimized results

provide a range of watershed management options for

pollution reduction and corresponding costs for the BMP

implementation. This trade off can aid watershed managers

in TMDL development and estimate the corresponding cost

for the placement of BMPs to achieve watershed man-

agement goals.
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